
Alterations in DNA methylation may 
cause disturbances in regulation 
of gene expression, including drug 
metabolism and distribution. More-
over, many cancers, including breast 
cancer, are characterized by DNA 
hypomethylation and a  decreased 
5-hydroxymethylcytosine level. The 
abnormal cell growth found in breast 
carcinoma might be the result of im-
paired up-regulation of breast can-
cer receptors. Receptors’ expression 
in breast cancer determines clinical 
outcome, and it is possible that they 
lead to different DNA methylation pat-
terns. Excessive steroid exposure can 
affect DNA methylation by promoting 
demethylation of CpG islands in pro-
moter regions of genes, and hence 
may have an impact on promotion 
and progression of breast cancer cells. 
Tamoxifen, as a leading drug in breast 
cancer hormone therapy, has an abili-
ty to act like estrogen or antiestrogen 
depending on the type and localiza-
tion of the breast cancer receptor. 
Further studies are needed to deter-
mine whether tamoxifen, similarly to 
steroids, may evoke changes in meth-
ylation pattern.
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Introduction

Alterations in DNA methylation pattern are proven to have an impact 
on cancerogenesis. Novel developments in this field have heightened the 
need to establish the involvement of drugs used in cancer treatment in the 
epigenome. In the light of recent discoveries, epigenetic processes, including 
DNA methylation, may affect regulation of crucial genes implicated in drug 
response and drug targets [1]. Current experimental evidence has demon-
strated that an active DNA demethylation process can affect DNA methyla-
tion pattern [2]. Tamoxifen, as a leading drug, which belongs to selective es-
trogen receptor modulators (SERMs), has been in clinical use for treatment 
and prevention of hormone-dependent breast cancer for nearly 40 years. 
Since its discovery, the use of tamoxifen has evolved by embracing its ability 
to act like estrogen in association with G-protein coupled receptors or anti-
estrogen in association to estrogen nuclear receptors [3, 4]. Given tamoxi-
fen’s facility to act like an agonist or antagonist of estrogen receptors [5], its 
pharmacological activity may be more complex than just control estrogen 
activity. Thus, the role of this agent may be potentially involved with other 
factors or processes which occur in cells. 

Active demethylation processes are essential during embryonic develop-
ment and cell differentiation, although they can be modulated by environ-
mental changes (e.g. after chemotherapy), which may manifest as random 
mutations [6]. Epigenetic modifications in the human genome may affect 
gene expression, particularly tumor suppressor genes, genes involved in 
apoptosis regulation and oncogenes [7], as well estrogen-dependent genes 
[8]. The level of epigenetic marks is flexible and mostly is associated with the 
response to hypomethylating factors. 

DNA methylation and demethylation

The level of gene expression in cells is often conditioned by various epi-
genetic modifications. The most fundamental and widely described epigen-
etic alteration is DNA methylation of the cytosine residue, which in turn 
leads to formation of 5-methylcytosine (5-mC), the fifth DNA base [9]. Such 
terminology reflects the relative abundance of 5-mC content in the human 
genome: approximately 4% of cytosine residues are methylated [10]. DNA 
methylation is a physiological phenomenon, which takes part in cellular de-
velopment and differentiation; however, it also plays a crucial role in the 
ageing process and carcinogenesis [11]. Vertebrate genomes are gener-
ally methylated in CpG islands, which are located at promoter regions of 
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genes. The presence of multiple methylated CpG islands 
of promoters causes gene silencing [12]. Apart from DNA 
methylation, the 5-mC level is dependent on active DNA 
demethylation, which is being currently explored. Active 
DNA demethylation involves TET, and possibly AID proteins 
[13]. TET (ten-eleven-translocation) proteins are 2-oxoglu-
tarate dependent dioxygenases (2-OGDDs), and the pro-
cess catalyzed by these enzymes requires 2-oxoglutarate 
as a co-substrate, and Fe2+ and ascorbate as co-factors. 
Their catalytic function involves oxidation of 5-mC to 5-hy-
droxymethylcytosine (5-hmC), and then to 5-formylcyto-
sine (5-fC), and 5-carboxylcytosine (5-caC). AID protein is 
an activation-induced deaminase which is implicated in 
deamination of 5-mC to thymine, and possibly 5-hmC to 
5-hydroxymethyluracil (5-hmU) [14]. Additionally, TET en-
zymes could generate 5-hmU from thymine [15]. Cytosine 
modifications can be subsequently excised by TDG (thy-
mine DNA glycosylase) or SMUG (single-strand selective 
monofunctional uracil-DNA glycosylase1) in the base ex-
cision repair system (BER) [16] (Fig. 1). DNA glycosylases 
replace modified bases with cytosines, which terminates 
in demethylated DNA formation [17]. The main role of TET 
proteins is preserving the fidelity of DNA methylation/de-
methylation at different stages of cellular development 
and differentiation. Recent research in this field has re-
vealed that the differences in TET expression are already 
visible in oocytes and zygotes: from the highest expres-
sion of TET3 to intermediate of TET2, and hardly observed 
for TET1. Moreover, TET expression changes dramatically 
during further cell development: at the 4-cell stage TET1 
and TET2 are expressed at a higher level than TET3, and 
this tendency remains at the same level until blastocyst 
formation [18].

Epigenetic modifications cause disturbances in regula-
tion of gene expression, including drug metabolism and 
distribution [1]. A considerable amount of literature has 
been published on the connection of 5-hmC with cancer 
development. It was found that many cancers reveal DNA 
hypomethylation [20–22]. A large and growing body of lit-
erature data has demonstrated that changes of 5-mC level 
imply 5-hmC depletion in many types of cancers [23, 24]. 
Literature data suggest that 5-hmC may be involved in 
gene regulation [25]. Moreover, an impaired DNA methyl-
ation pattern is linked with activation or repression of key 
genes, which in turn may lead to expression changes and 
cancer progression [7].

5-hmC level is regarded as a biomarker of malignant 
transformation, which is considered in evaluating the 
active DNA demethylation process. The potential role of 
active DNA demethylation derivatives as a novel predic-
tive factor linked with hormonal therapy outcome has not 
been investigated yet. Recent research has revealed that 
5-hmC is decreased in cancer cells, including breast cancer 
cells [23, 26]. Literature data suggest that 5-hmC level is 
positively associated with 5-mC level in breast cancer pa-
tients. Moreover, it was demonstrated that decreased lev-
els of 5-mC and 5-hmC are potentially correlated with poor 
disease-free survival (DFS) and disease-specific survival 
(DSS) in breast cancer patients with ER/PR(-) in compar-
ison to those with ER/PR(+) [27]. Although literature data 

indicate that 5-hmC is reduced in many types of cancer, 
there is a gap in terms of its possible predictive role in ther-
apy outcome.

Recent developments have focused on the role of TETs 
and TDG in breast cancer patients. Yang et al. investigat-
ed the relationship between TET1 mRNA level and overall 
survival among breast cancer patients treated with anth-
racyclines. Additionally, they suggested that high TET3 and 
TDG expression might be a significant predictive factor of 
clinical outcome in this group [28]. However, it still remains 
unclear why TET and TDG expression is unsettled in dif-
ferent types of tumors. Since 5-hmC and its modifications 
are products of TET proteins’ activity, it is suggested that 
alterations in gene expression are associated with 5-mC 
derivatives content. Since the overwhelming majority of 
alterations in TET activity are not related to genetic muta-
tions, it suggests that other factors are potentially respon-
sible for such changes.

Breast cancer subtypes

Breast cancer is the most frequent malignancy amongst 
women worldwide. It affects over 2.1 million women per 
year globally and it is the cause of death for almost 600 
thousand of them [29]. This type of cancer, similarly to oth-
ers, displays global hypomethylation as a result of genome 
instability. Furthermore, it was conclusively demonstrated 
that alterations in DNA methylation of pivotal genes (BRCA, 
p53, ERα) are involved in cancer progression [30]. Changes 
in DNA methylation are associated with molecular subtypes 
of breast cancer, which may suggest an important role of 
impaired DNA methylation in carcinogenesis [31].

Breast cancer is classified into five biological subtypes 
based on expression of ER, PR, human epidermal growth 
factor 2 (HER2) receptors, and nuclear antigen Ki-67 (Ta-
ble 1). According to the 5th St Gallen International Breast 
Cancer Conference, expression of steroid hormones and 

Fig. 1. Graphic presentation of DNA demethylation pathways (based 
on [19])
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HER2 receptors constitutes a crucial prognostic and pre-
dictive factor of breast cancer outcome [33]. The vast ma-
jority of breast cancer cases (approximately 60–70%) are 
ER(+) and PR(+) positive. Breast cancers with high expres-
sion of steroid hormone receptors are less invasive, and 
have better prognosis overall. The triple negative subtype 
has the worst prognosis, and it accounts for approximate-
ly 15–25% of breast cancer cases. Regardless of poten-
tial clinical recovery, receptor expression determines the 
treatment strategy: trastuzumab for HER2 (+) subtypes or 
drugs affecting estrogen synthesis or estrogen receptors 
for those with ER/PR expression [32]. 

Breast cancer receptors’ significance

ERs are members of the nuclear receptor superfamily of 
ligand-activated transcription factors. After ligand activa-
tion, ERs undergo conformational changes, and as a result 
they could bind to estrogen response elements (ERE) in 
DNA and have an impact on regulation of gene expression 
[34]. Isoforms of ER (ERα and ERβ) are under the control of 
two genes, ESR1 and ESR2. Contrary to ER, isoforms of pro-
gesterone receptor (PRA and PRB) are coded by one gene, 
PGR [35]. The expression and activity of PR are regulated 
by ER: PR is expressed as a result of ER activation [36].

The elevated estrogen activity in cancer cells is con-
nected with increase of ERα quantity; thus ERα is used as 
a target of hormonal therapy of breast cancer. Moreover, 
the grade of malignancy and stage of differentiation are 
associated with ERα expression. In contrast to ERα, ERβ is 
expressed mainly in healthy mammary gland [37]. More-
over, ERβ could exert an antagonistic effect on ERα action 
in certain tissues, which in turn may lead to decrease of 
cellular proliferation. Reduced ERβ expression in cancer 
suggests that this isoform has suppressor activity in hor-
mone-dependent tissue, e.g. in mammary gland [38]. 

In 2000 Filardo et al. observed that the rapid response 
to 17β-estradiol is a consequence of extracellular regulat-
ed kinase (ERK) activation, which was not connected with 
ERα or ERβ, but with a G-protein-coupled receptor named 
GPR30/GPER [39]. Later, it was conclusively demonstrat-
ed that GPER also binds estradiol with high affinity and 
is connected with rapid non-genomic signaling of estra-
diol [40]. GPERs are classified as membrane receptors, al-
though they may also occur in cytoplasm and nucleus [41].

The HER family is arranged in regulation of growth and 
development in breast cancer cells. HERs, in contrast to ER 
and PR, are epidermal growth factor receptors (EGFR) ex-
pressed in the cell membrane. Due to the fact that HER2 
acts without a known ligand, it constitutively occurs in ac-

tive conformation, and undertakes dimer formation with 
another EGFR. Hetero- or homodimerization leads to ty-
rosine kinase phosphorylation, and activation of the sig-
naling pathway [42]. HER2 (+) occurs only in 15% of breast 
cancer patients; however, 10% of them also expressed 
ER(+) [43].

It is becoming increasingly clear that there is a high 
probability that abnormal cell growth found in breast car-
cinoma might be the result of impaired up-regulation of 
ER, GPER and HER2. The potential signaling pathways are 
able to stimulate each other: G protein-coupled estrogen 
receptor can trigger HER2 signaling, while tyrosine kinases 
cascade preceded by HER2 activation may phosphorylate 
and initiate the activation of ER and its proteins [44, 45]. 
Receptors’ expression in breast cancer determines the 
clinical outcome. Hence, it could be possible that the DNA 
methylation pattern varies between human breast cancer 
cells with diversified expression of receptors. 

Estrogens as natural ER ligands are implicated in 
growth and proliferation of cells, e.g. in mammary gland. 
Nevertheless, excessive estrogen exposure may have an 
impact on promotion and progression of breast cancer in 
humans [46]. Inhibited proliferation of cancer cells after 
high concentrations of β-estradiol (E2) was also observed 
in human cancer cell lines [47]. Moreover, E2 may act as 
a gene expression regulator though its ability to bind ER. 
Based on literature data, it was suggested that E2 can af-
fect DNA methylation by promoting demethylation of CpG 
islands in promoter regions of genes [48, 49]. Furthermore, 
a recent study revealed that E2 supplementation of cul-
tured cells resulted in almost entire removal of 5-mC in the 
SVEP1 gene promoter, and thus increased the unmethylat-
ed DNA level [50].

Biochemistry of tamoxifen

There are three possible treatment strategies of hor-
mone-dependent breast cancer: arresting of estrogen 
synthesis via aromatase inhibitors, competitive binding 
to estrogen receptors and modulating their activity by 
antiestrogens, and prevention of ER signaling by causing 
degradation of ER by selective estrogen degraders (SERDs) 
[51]. The second group, represented widely as selective es-
trogen receptor modulators (SERMs), has been in clinical 
use for nearly 40 years [52].The best known representa-
tive of SERMs is tamoxifen, which is currently used in all 
stages of ER(+) breast cancer in pre- and postmenopaus-
al women, and in ductal carcinoma in situ [53]. Moreover, 
tamoxifen is used for prevention of breast cancer for 
women at very high risk of developing the disease [54]. 

Table 1. Biological subtypes of breast cancer (based on [32])

Breast cancer subtype Estrogen receptor Progesterone receptor HER2 receptor Ki-67

Luminal A-like Positive Positive Negative Low (< 20%)

Luminal B-like (HER2 negative) Positive Negative or low Negative High (> 20%)

Luminal B-like (HER2 positive) Positive Any Positive Any

HER2 positive (HER2 enriched) Negative Negative Positive Any

Triple negative (basal like) Negative Negative Negative Any
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Additionally, longer tamoxifen treatment, up to 10 years, 
results in a 50% decrease in breast cancer mortality in the 
course of the second decade after diagnosis [55]. Based 
on pharmacological research, tamoxifen is transformed 
into three active metabolites in the human organism: 
4-hydroxytamoxifen, N-desmethyltamoxifen, and 4-hy-
droxy-N-desmethyltamoxifen (endoxifen) [56]. Conversion 
of tamoxifen implicates hepatic CYP2D6 and CYP3A4/3A5 
cytochromes, which metabolize tamoxifen to its metabo-
lites in two different manners: to N-desmethyltamoxifen 
(CYP3A4/3A5), and further to 4-hydroxy-N-desmethyl-
tamoxifen (CYP2D6), or to 4-hydroxytamoxifen (CYP2D6) 
and then to 4-hydroxy-N-desmethyltamoxifen (CYP3A4/ 
3A5) [57]. It has been established by pharmacological pro-
filing that tamoxifen is a prodrug, hence its therapeutic ac-
tion results from its active metabolites: 4-hydroxytamoxi-
fen and endoxifen [58]. The affinity of 4-hydroxytamoxifen 
and endoxifen to ERα and ERβ is considerably similar, 
much the same as the other antiestrogens associated 
with regulation of estrogen-dependent gene expression 
[59]. However, given that the plasma level of endoxifen 
is 5–10 fold higher compared to 4-hydroxytamoxifen, it is 
suggested that this metabolite is presumably a key tamox-
ifen derivative accountable for pharmacological activity of 
tamoxifen in the human organism [60].

Mechanisms of SERM action in breast cancer 
cells

SERMs may act as antagonists or agonists of ERs de-
pending on type of receptor: nuclear or G protein-coupled. 
The antagonistic action of SERMs is associated with nu-

clear ERs and connected to breast cancer treatment. After 
binding to ER, tamoxifen evokes the receptor’s conforma-
tional changes, but distinct from the ER-estrogen complex. 
The tamoxifen-ER bond dimerizes and translocates to the 
nucleus, where it prevents transcription of estrogen-depen-
dent genes by attaching to estrogen response elements 
(ERE) in DNA [61]. This successively results in inhibition of 
estrogen activity, which is connected with growth and pro-
liferation of cells [62, 63]. As estrogen receptor agonists, 
SERMs affect GPERs, which has been identified as a main 
factor in rapid responses to estrogens [64]. Tamoxifen ac-
tivation of GPER results in modification of the estrogen 
receptor or its co-activators by phosphorylation, which 
can cause independent ligand activation or an impaired 
response to other ER regulators [27] (Fig. 2). This type of 
interaction occurs mainly in bones and liver [3]. However, 
it is possible that estrogens and SERMs affect impaired cell 
growth and proliferation though activation of GPERs, and 
it may be the predominant pathway in transformation of 
breast cancer cells into cells resistant to hormone therapy. 
Hence, it could conceivably be suggested that the role of 
tamoxifen is not only limited to involvement in regulation 
of estrogen-induced genes. 

Tamoxifen as an antiestrogen may inhibit breast can-
cer cell growth and proliferation. However, acquired re-
sistance to SERMs therapy still remains a problematical 
issue as adjuvant therapy is extended. The proposed 
mechanism of antiestrogen resistance is associated with 
GPER activation. It was suggested that GPERs may pre-
cede stimulatory estrogen signaling for proliferation and 
migration, regardless of ER expression [65]. Moreover, 

CREB – cAMP response element binding protein, cAMP – cyclic adenosine monophosphate, ER – estrogen receptor, ERE – estrogen response elements,  
ERK – extracellular regulated kinase, GPER – G-protein-coupled receptor, HER2 – human epidermal growth factor 2 receptor, HB-EGF – heparin-binding EGF-like 
growth factor, MAPK – mitogen activated protein kinases, MMP – matrix metalloproteinase, PI3K – phosphoinositide 3-kinase, SERM – selective estrogen recep-
tor modulator

Fig. 2. Mechanisms of possible tamoxifen signaling 
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abnormal activity of ER caused by antiestrogens may be 
linked with changes in gene expression as a result of epi-
genetic modifications [8].

It was conclusively demonstrated that estrogen recep-
tor signaling and DNA methylation are implicated in reg-
ulation of the cell cycle by modulating antiproliferative 
and proliferative genes [66, 67]. Although there are some 
data concerning partially overlapping gene regulation by 
estrogen signaling and DNA methylation, its detailed mo-
lecular mechanism and common target genes have re-
mained enigmatic [8, 68]. It may be possible that SERMs 
can potentially interrupt estrogen receptor function 
and thus similarly affect the DNA methylation pattern.  
Moreover, several studies have proved that sustained 
SERM therapy can manifest distinct global gene expres-
sion and DNA methylation of promoters in breast cancer 
cells [69, 70].

Conclusions

The treatment of choice of ER/PR(+) breast cancer pa-
tients is based on the selective estrogen receptor mod-
ulator tamoxifen, which in long-term therapy serves as 
a considerably reliable drug. Of note, tamoxifen therapy 
leads to recovery in hundreds of thousands of ER/PR(+) 
breast cancer cases [71]. Since the discovery of tamoxi-
fen, the use of the drug has evolved by embracing its abil-
ity to act like estrogen or antiestrogen depending on the 
receptor type and its localization around the body. Such 
ability created new possibilities in drug development and 
therapeutic use, i.e. tamoxifen acts like estrogen in oste-
oporosis treatment by preventing bone density loss, and 
like antiestrogen in breast cancer therapy by inhibition of 
estrogen action [72]. Hence, it is becoming increasingly 
clear that the action of SERMs at different target sites 
is more complex than just switching estrogen activity. It 
may be dependent on other factors and processes taking 
place in target cells. 

Further studies are needed to determine whether 
tamoxifen, similarly to steroids, may evoke changes in 
the methylation pattern. Such research may provide new 
information, which may pave the way for new diagnostic 
and therapeutic methods as well as innovations in person-
alized medicine approaches. 
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